瑞典皇家科學院正式公布本年度的諾貝爾化學獎得主
2025年10月8日,瑞典皇家科學院正式公布本年度的諾貝爾化學獎得主。這項殊榮由三位科學家共同獲得——日本京都大學教授北川進(Susumu Kitagawa)、澳洲墨爾本大學教授理查德·羅布森(Richard Robson),以及美國加州大學柏克萊分校教授奧馬爾·亞基(Omar M. Yaghi)。三人因在金屬有機框架(Metal-Organic Frameworks,簡稱MOF)領域的開創性研究與卓越貢獻而獲獎。評選委員會在公告中指出,他們的研究「徹底改變人類對多孔材料的理解,開啟新一代材料科學與化學應用的時代」。
金屬有機框架(MOF)是一類由金屬離子與有機配體組成的晶體結構,具有極高的比表面積與可調控的孔洞結構。這類材料能像「分子海綿」般吸附、儲存與分離各種氣體,因此在能源、環境、醫藥及催化等領域都展現巨大的應用潛力。早在1990年代,北川進與羅布森分別提出並證實金屬離子與有機配體能自組裝形成穩定的三維多孔網絡;而亞基則在此基礎上進一步拓展理論,成功創造出結構穩定、可重複利用的MOF,並命名這一全新材料體系。
北川進被譽為「多孔化學之父」,他最早提出「柔性框架」的概念,指出MOF材料在吸附氣體時可以像肺部一樣「呼吸」,其孔洞會隨外部條件改變而伸縮;理查德·羅布森則以精確的結晶學設計,使得MOF結構能被穩定複製與系統化研究;奧馬爾·亞基則以其無與倫比的理論創新與實驗技術,將MOF推向實際應用層面,並發展出衍生的共價有機框架(COF),為整個材料化學領域開闢新天地。
如今,金屬有機框架已被廣泛應用於二氧化碳捕集與轉化、氫氣與甲烷儲存、藥物遞送、氣體分離與淨化、以及環境污染治理等前沿技術中。許多研究機構與企業都以此為基礎,發展能源永續與清潔環保解決方案。諾貝爾委員會在頒獎詞中強調,這三位學者的研究「讓化學家能夠以分子積木的方式構建出前所未有的材料,並以可預測的方式控制其結構與功能」,這種設計思想「重新定義了化學的邊界」。
北川進在得知獲獎後表示,這是對所有材料科學家的鼓勵,他希望MOF能繼續幫助人類解決能源與環境危機。亞基則感言,這個領域的美在於「結合藝術般的結構設計與科學的嚴謹邏輯」,未來仍有無限可能。羅布森則謙虛地說,他只是「為化學建築學打下了地基」。
此次諾貝爾化學獎的頒發,被認為是對材料化學革命的重要肯定,也標誌著人類在分子層級操控物質結構的能力進入全新階段。許多專家指出,這三位學者的研究成果不僅改變化學研究的方向,更為實現低碳經濟與永續能源奠定堅實的科學基礎。
On October 8, 2025, the Royal Swedish Academy of Sciences announced the winners of the Nobel Prize in Chemistry, awarding it to Susumu Kitagawa of Kyoto University (Japan), Richard Robson of the University of Melbourne (Australia), and Omar M. Yaghi of the University of California, Berkeley (USA). The trio was honored for their pioneering work in the development of metal-organic frameworks (MOFs)—a groundbreaking class of materials that has revolutionized modern chemistry and materials science. The committee praised their achievement as “a discovery that fundamentally changed our understanding of porous materials and opened a new era in molecular design.”
Metal-organic frameworks (MOFs) are crystalline materials composed of metal ions linked by organic molecules, forming structures with enormous surface areas and tunable pores. Often described as “molecular sponges,” MOFs can absorb, store, and separate gases with remarkable efficiency. Their applications extend across energy storage, catalysis, environmental remediation, and drug delivery.
In the early 1990s, Kitagawa and Robson independently demonstrated that metal ions and organic ligands could self-assemble into stable, porous three-dimensional networks. Yaghi later expanded upon their foundational work, creating robust, reusable MOFs and formalizing the framework theory that defines the field today.
Susumu Kitagawa, often called the “Father of Porous Chemistry,” introduced the concept of flexible frameworks, showing that MOFs can “breathe” by expanding or contracting their pores in response to external stimuli—much like human lungs. Richard Robson contributed by developing crystallographic precision and systematic design principles, allowing researchers to reproduce and categorize these frameworks reliably. Omar M. Yaghi, known for his visionary approach, pushed MOFs toward practical applications and further invented covalent organic frameworks (COFs), another major class of porous materials that advanced molecular architecture even further.
Today, MOFs play a vital role in carbon capture and conversion, hydrogen and methane storage, air purification, gas separation, and drug delivery. Many global companies and research institutions are developing sustainable technologies based on MOF chemistry to address climate and energy challenges. The Nobel Committee emphasized that these scientists’ work “enabled chemists to construct materials with atomic precision, predict their properties, and tailor their functions—redefining the boundaries of chemistry itself.”
Upon hearing the news, Kitagawa expressed gratitude, saying the prize was “a recognition for all scientists working toward a sustainable future.” Yaghi reflected on the beauty of the field, describing MOF design as “a blend of art and science,” while Robson humbly remarked that he had merely “helped lay the foundation for the architecture of chemistry.”
The 2025 Nobel Prize in Chemistry thus acknowledges not only a landmark scientific breakthrough but also the birth of a materials revolution. Experts note that their work has transformed how humanity manipulates matter at the molecular level, paving the way for cleaner energy, smarter materials, and a more sustainable planet.
- 1
- 2
- 3
- 4